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I've.. SEEN things... you people wouldn't believe...

1200 line SQL views over 15 tables, calculating 3 types of similar
measures, duplicated because of a single nullable column,
pushed into the same table

* 4 ditferent implementations of margin in the same warehouse
Over a billion records replicated daily out of 250 tables

» 3 different implementations of “Sold Product Quantity”

Time to do things ditferently!
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“ETL with airflow”

* Process data in “partitions”

* Rest data between tasks (from “data at rest” to “data at rest”)
* Deal with changing logic over time (conditional execution)
 Use Persistent Staging Area (PSA)

* “Functional” data pipelines:
* |Idempotent
* Deterministic

* Parameterized workflow
 Data checks as part of your workflow
* Alerting and SLA’s




e
Partition ingested data and rest data between tasks

Partitioning data means you build immutable sets of partitions
"INSERT OVERWRITE" partitions

Partitions align with ETL schedule and intervals

* every "1" day?
* every 4 hours?
* every 15 minutes?



Partition ingested data and rest data between tasks
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Dealing with changing logic over time

(BranchPythonOperator | ( DummyOperator |

_— old_way —.

stage_sales — select_processing_method process_aggregate
T new_way —

def decide flow(**context):
If (context['execution_date'] < datetime.datetime(2018,1,1)):
return "old_way"
return "new_way"
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Persistent staging area

* Decouples your analytics datasets from the sources
* Storage is cheaper and distributed, unlike before

* Maintains full partitioned history with schema

Better than a db backup (99.999999999% durability)
(availability is 99.99%)



I —
Reproducibility

Reproducibility is foundational to scientific method
* Legal perspective

* Bug solving

* Fixing design issues

* Your sanity

Approaching ETL “functionally” yields reproducibility



]
Functional ETL/ELT

* Pure functions
* Immutable
* |dempotent

* Deterministic



.
Pure functions

» Limited to their own scope

» Output depends only on input
* No side effects

* Easy to unit test

 Never UPDATE, DELETE, APPEND (no mutations)

* Limited # of source partitions (input)



Pure functions

pure function:

def f(x):
return x+1

not a pure function:

a=>5

def f(x):
global a
a=a+x
return a

not a pure function:

def f(x):
f = open(‘file’, 'r’)
f.write(x)
return x+1



e
Immutability

* “Once a variable is assigned, it is fixed”

* “"Once a partition is processed, its data is not mutated”



I —
ldempotency, Determinism

ldempotent:

“No changes in output state when called multiple times.”

Deterministic:

“"A function’s output only depends on its input, not on hidden or
global state.”



.
Parameterized workflow |

copy_task = BigQueryOperator(
sql="my_data_pipeline/query.sql’,
destination_project_dataset_table="project.dataset.table’,
write_disposition="WRITE_TRUNCATE,
create_disposition="CREATE_IF_NEEDED/,
bigquery_conn_id="gcp_svc_account,,
pool="my_pool’)

copy_task >> some_other_task



.
Parameterized workflow Il

SELECT "{{ ds_nodash }}" as date, repo,
SUM(stars) as stars_last 28 days,
SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ macros.ds_add(ds, -6) }}")
AND TIMESTAMP("{{ ds }}"), stars, null)) as stars_last_7_days,
SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ yesterday_ds }}")
AND TIMESTAMP("{{ ds }}") , stars, null)) as stars_last 1 _day
FROM
“airflow-cloud-public-datasets.github trends.github_daily metrics’
WHERE _PARTITIONTIME BETWEEN TIMESTAMP("{{ macros.ds_add(ds, -27) }}") AND
TIMESTAMP("{{ ds }}")
GROUP BY
date,
repo

I BN NS



I —
Data checks as part of your workflow

load data — check num_records — calculate measures — check measures

class airflow.operators.check_operator.IntervalCheckOperatori(table, metrics_thresholds,
date_filter_column='ds', days_back=-7, conn_id=None, *args, **kwargs) [source]

Bases: airflow.models.BaseOperator

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the
ones from days_back before.

Note that this is an abstract class and get_db_hook needs to be defined. Whereas a
get_db_hook is hook that gets a single record from an external source.

Parameters: e table (str) - the table name
e days_back (int) - number of days between ds and the ds we want to check against.
Defaults to 7 days
e metrics_threshold (dict) - a dictionary of ratios indexed by metrics

. H E .
EEEEEE
-

bigdata
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Alerts and SLA's

EMAIL = 'data-engineering-team@acme.com’

default_args = {
'owner': 'airflow’,
'start_date'": datetime.datetime(2018, 1, 1),
‘email': [EMAIL],
‘email_on_failure': True,
'‘email_on_retry': False,
'retries': 2,
'retry_delay': timedelta(minutes=5),
'sla': timedelta(hours=5),
'‘execution_timeout': timedelta(hours=7)

}

dag = DAG(
'sla_example_dag’,
default_args=default_args,
description="'A simple SLA demonstration DAG',
schedule _interval='0 0 * * *

)

I BN NS
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“ETL with airflow”

* Process data in “partitions”

» Rest data between tasks (from “data at rest” to “data at rest”)
 Deal with changing logic over time (conditional execution)

« Use Persistent Staging Area (PSA)

* “Functional” data pipelines:
* Idempotent
* Deterministic

e Parameterized workflow

» Data checks as part of your worktlow
* Alerting and SLA’s

SEREZ. WREPUBLIC



I —
What's complicating with Kimball

* Many up-front design choices

The DWH is subject to mutations (MERGE/UPDATE)

Often too many concerns covered in one SQL statement

* History is lost with type 1 SCD



Snapshot the dimensions...

Current attributes: Historical attributes:

SELECT * FROM
fact a INNER JOIN
dim b ON a.dim id = b.dim id AND

SELECT * FROM
fact a INNER JOIN dim b
ON a.dim id = b.dim id AND

b.date partition = ‘{current date}’ b.date partition = a.date partition

“Time series over your dimensions’
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The future of airflow: “ETL code generation”

- owner: team-data-engineering@acme.com
- time_frames:

- 1day

- 7 days

- 1 month
- dimensions:

- device_type

- customer_type

- source_data_set: ab_experiment_B250
- demographics:

- age

- gender



mailto:team-data-engineering@acme.com

.
The future of airflow: “metrics definition”

- metric_name: sold_product_quantity
- subject: user
- sql: SELECT ... FROM .. WHERE ... GROUP BY ...

- dependencies:
- sold_product_history

- dimensions:
- product



e
The future of airflow: “data lineage”

Airbnb Engineering & Data Science

HOME Al BACKEND DATA INFRASTRUCTURE NATIVE WEB | OPEN SOURCE

Applause from you, Chris C Williams, and 646 others
J Chris C Williams
=g ¥F May 12,2017 - 7 min read

Democratizing Data at Airbnb
By Chris Williams, Eli Brumbaugh, Jeff Feng, John Bodley, and Michelle

Thomas

Q_ Search all Airbnb metrics|

> Apache Atlas
e Pigdata




I —
Meta-data engineering: “pipeline machinery”

bigdata
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