Big Data Vilnius

Design philosophy of Apache Airflow ETL pipelines

 1200 line SQL views over 15 tables, calculating 3 types of similar measures, duplicated because of a single nullable column, pushed into the same table

- 1200 line SQL views over 15 tables, calculating 3 types of similar measures, duplicated because of a single nullable column, pushed into the same table
- 4 different implementations of *margin* in the same warehouse

- 1200 line SQL views over 15 tables, calculating 3 types of similar measures, duplicated because of a single nullable column, pushed into the same table
- 4 different implementations of *margin* in the same warehouse
- Over a billion records replicated daily out of 250 tables

- 1200 line SQL views over 15 tables, calculating 3 types of similar measures, duplicated because of a single nullable column, pushed into the same table
- 4 different implementations of *margin* in the same warehouse
- Over a billion records replicated daily out of 250 tables
- 3 different implementations of "Sold Product Quantity"

- 1200 line SQL views over 15 tables, calculating 3 types of similar measures, duplicated because of a single nullable column, pushed into the same table
- 4 different implementations of *margin* in the same warehouse
- Over a billion records replicated daily out of 250 tables
- 3 different implementations of "Sold Product Quantity"

Time to do things differently!

• Process data in "partitions"

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)
- "Functional" data pipelines:
 - Idempotent
 - Deterministic

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)
- "Functional" data pipelines:
 - Idempotent
 - Deterministic
- Parameterized workflow

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)
- "Functional" data pipelines:
 - Idempotent
 - Deterministic
- Parameterized workflow
- Data checks as part of your workflow

- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)
- "Functional" data pipelines:
 - Idempotent
 - Deterministic
- Parameterized workflow
- Data checks as part of your workflow
- Alerting and SLA's

Partition ingested data and rest data between tasks

Partitioning data means you build immutable sets of partitions

"INSERT OVERWRITE" partitions

Partitions align with ETL schedule and intervals

- every "1" day?
- every 4 hours?
- every 15 minutes?

Partition ingested data and rest data between tasks

Partition ingested data and rest data between tasks

Dealing with changing logic over time

BranchPythonOperator DummyOperator

def decide_flow(**context):

if (context['execution_date'] < datetime.datetime(2018,1,1)):
 return "old_way"
return "new_way"</pre>

• Decouples your analytics datasets from the sources

- Decouples your analytics datasets from the sources
- Storage is cheaper and distributed, unlike before

- Decouples your analytics datasets from the sources
- Storage is cheaper and distributed, unlike before
- Maintains full partitioned history with schema

- Decouples your analytics datasets from the sources
- Storage is cheaper and distributed, unlike before
- Maintains full partitioned history with schema
- Better than a db backup (99.99999999% durability) (availability is 99.99%)

Reproducibility

Reproducibility is foundational to scientific method

- Legal perspective
- Bug solving
- Fixing design issues
- Your sanity

Approaching ETL "functionally" yields reproducibility

Functional ETL/ELT

- Pure functions
- Immutable
- Idempotent
- Deterministic

Pure functions

- Limited to their own scope
- Output depends only on input
- No side effects
- Easy to unit test
- Never UPDATE, DELETE, APPEND (no mutations)
- Limited # of source partitions (input)

Pure functions

pure function:

not a pure function:

not a pure function:

def f(x): return x+1

a = 5 def f(x): global a a = a + x return a def f(x):
 f = open('file', 'r')
 f.write(x)
 return x+1

Immutability

- "Once a variable is assigned, it is fixed"
- "Once a partition is processed, its data is not mutated"

Idempotency, Determinism

Idempotent:

"No changes in output state when called multiple times."

Deterministic:

"A function's output only depends on its input, not on hidden or global state."

Parameterized workflow I

```
copy_task = BigQueryOperator(
    sql='my_data_pipeline/query.sql',
    destination_project_dataset_table='project.dataset.table',
    write_disposition='WRITE_TRUNCATE',
    create_disposition='CREATE_IF_NEEDED',
    bigquery_conn_id='gcp_svc_account',
    pool='my_pool')
```

copy_task >> some_other_task

Parameterized workflow II

SELECT "{{ ds_nodash }}" as date, repo,

SUM(stars) as stars_last_28_days,

SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ macros.ds_add(ds, -6) }}")

AND TIMESTAMP("**{{ ds }}**"), stars, null)) as stars_last_7_days,

SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ yesterday_ds }}")

AND TIMESTAMP("{{ ds }}"), stars, null)) as stars_last_1_day

FROM

`airflow-cloud-public-datasets.github_trends.github_daily_metrics`

WHERE _PARTITIONTIME BETWEEN TIMESTAMP("**{{ macros.ds_add(ds, -27) }}**") AND TIMESTAMP("**{{ ds }}**")

GROUP BY

date,

repo

Data checks as part of your workflow

load_data → check_num_records → calculate_measures → check_measures

class airflow.operators.check_operator.IntervalCheckOperator(table, metrics_thresholds, date_filter_column='ds', days_back=-7, conn_id=None, *args, **kwargs) [source]

Bases: airflow.models.BaseOperator

Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before.

Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that gets a single record from an external source.

- Parameters: table (str) the table name
 - days_back (int) number of days between ds and the ds we want to check against.
 Defaults to 7 days
 - metrics_threshold (dict) a dictionary of ratios indexed by metrics

Alerts and SLA's

EMAIL = 'data-engineering-team@acme.com'

```
default_args = {
    'owner': 'airflow',
    'start_date': datetime.datetime(2018, 1, 1),
    'email': [EMAIL],
    'email_on_failure': True,
    'email_on_retry': False,
    'retries': 2,
    'retry_delay': timedelta(minutes=5),
    'sla': timedelta(hours=5),
    'execution_timeout': timedelta(hours=7)
}
```

```
dag = DAG(
   'sla_example_dag',
   default_args=default_args,
   description='A simple SLA demonstration DAG',
   schedule_interval='0 0 * * *'
}
```


- Process data in "partitions"
- Rest data between tasks (from "data at rest" to "data at rest")
- Deal with changing logic over time (conditional execution)
- Use Persistent Staging Area (PSA)
- "Functional" data pipelines:
 - Idempotent
 - Deterministic
- Parameterized workflow
- Data checks as part of your workflow
- Alerting and SLA's

What's complicating with Kimball

- Many up-front design choices
- The DWH is subject to mutations (MERGE/UPDATE)
- Often too many concerns covered in one SQL statement
- History is lost with type 1 SCD

A bigdata way to solve Slowly Changing Dimensions

Snapshot the dimensions...

Current attributes:

```
SELECT * FROM
fact a INNER JOIN dim b
ON a.dim_id = b.dim_id AND
b.date_partition = `{current_date}'
```

Historical attributes:

```
SELECT * FROM
fact a INNER JOIN
dim b ON a.dim_id = b.dim_id AND
b.date partition = a.date partition
```

"Time series over your dimensions"

The future of airflow: "ETL code generation"

- owner: team-data-engineering@acme.com
- time_frames:
 - 1 day
 - 7 days
 - 1 month
- dimensions:
 - device_type
 - customer_type
- **source_data_set**: ab_experiment_B250
- demographics:
 - age
 - gender

The future of airflow: "metrics definition"

- **metric_name**: sold_product_quantity
- subject: user
- sql: SELECT ... FROM ... WHERE ... GROUP BY ...
- dependencies:
 - sold_product_history
- dimensions:
 - product

The future of airflow: "data lineage"

M Airbnb Engineering & Data Science Following ~

HOME AI BACKEND DATA INFRASTRUCTURE NATIVE WEB OPEN SOURCE

Applause from you, Chris C Williams, and 646 others

Democratizing Data at Airbnb

By <u>Chris Williams</u>, <u>Eli Brumbaugh</u>, <u>Jeff Feng</u>, <u>John Bodley</u>, and <u>Michelle</u> <u>Thomas</u>

Q Search all Airbnb **metrics**

Meta-data engineering: "pipeline machinery"

Thank you!

Join at slido.com: #bigdata2018

1050

+31 (0)1 - 68479294
 Coltbaan 4C, Nieuwegein
 @bigdatarep
 www.bigdatarepublic.nl
 /company/bigdata-republic
 info@bigdatarepublic.nl

