
Big Data Vilnius

Design philosophy of 
Apache Airflow ETL pipelines
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Time to do things differently!
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Partition ingested data and rest data between tasks

Partitioning data means you build immutable sets of partitions

“INSERT OVERWRITE” partitions

Partitions align with ETL schedule and intervals

• every “1” day?
• every 4 hours?
• every 15 minutes?
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Dealing with changing logic over time

def decide_flow(**context):
   if (context['execution_date'] < datetime.datetime(2018,1,1)):
       return "old_way"
   return "new_way"
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Persistent staging area

• Decouples your analytics datasets from the sources

• Storage is cheaper and distributed, unlike before

• Maintains full partitioned history with schema

• Better than a db backup (99.999999999% durability)
(availability is 99.99%)



Reproducibility

Reproducibility is foundational to scientific method

• Legal perspective

• Bug solving

• Fixing design issues

• Your sanity

Approaching ETL “functionally” yields reproducibility



Functional ETL/ELT

• Pure functions

• Immutable

• Idempotent

• Deterministic



Pure functions

• Limited to their own scope

• Output depends only on input

• No side effects

• Easy to unit test

• Never UPDATE, DELETE, APPEND (no mutations)

• Limited # of source partitions (input)



Pure functions

pure function: not a pure function: not a pure function:

def f(x):
    return x+1

a = 5

def f(x):
    global a
    a = a + x
    return a

def f(x):
    f = open(‘file’, ‘r’)
    f.write(x)
    return x+1



Immutability

• “Once a variable is assigned, it is fixed”

• “Once a partition is processed, its data is not mutated”



Idempotency, Determinism

Idempotent:

“No changes in output state when called multiple times.”

Deterministic:

“A function’s output only depends on its input, not on hidden or 
global state.”



Parameterized workflow I

copy_task = BigQueryOperator(
sql=’my_data_pipeline/query.sql’,
destination_project_dataset_table=’project.dataset.table’,
write_disposition=’WRITE_TRUNCATE’,
create_disposition=’CREATE_IF_NEEDED’,
bigquery_conn_id=’gcp_svc_account’,
pool=’my_pool’)

copy_task >> some_other_task



Parameterized workflow II

 SELECT   "{{ ds_nodash }}" as date, repo,
     SUM(stars) as stars_last_28_days,
     SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ macros.ds_add(ds, -6) }}") 
               AND TIMESTAMP("{{ ds }}"), stars, null)) as stars_last_7_days,
     SUM(IF(_PARTITIONTIME BETWEEN TIMESTAMP("{{ yesterday_ds }}") 
               AND TIMESTAMP("{{ ds }}") , stars, null)) as stars_last_1_day
 FROM
      `airflow-cloud-public-datasets.github_trends.github_daily_metrics`
 WHERE _PARTITIONTIME BETWEEN TIMESTAMP("{{ macros.ds_add(ds, -27) }}") AND 
                 TIMESTAMP("{{ ds }}")
 GROUP BY
   date,
   repo



Data checks as part of your workflow



Alerts and SLA’s
EMAIL = 'data-engineering-team@acme.com’

default_args = {
   'owner': 'airflow',
   'start_date': datetime.datetime(2018, 1, 1),
   'email': [EMAIL],
   'email_on_failure': True,
   'email_on_retry': False,
   'retries': 2,
   'retry_delay': timedelta(minutes=5),
   'sla': timedelta(hours=5),
   'execution_timeout': timedelta(hours=7)
}

dag = DAG(
   'sla_example_dag',
   default_args=default_args,
   description='A simple SLA demonstration DAG',
   schedule_interval=’0 0 * * *’
)
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What’s complicating with Kimball

• Many up-front design choices

• The DWH is subject to mutations (MERGE/UPDATE)

• Often too many concerns covered in one SQL statement

• History is lost with type 1 SCD



A bigdata way to solve Slowly Changing Dimensions

Snapshot the dimensions...

“Time series over your dimensions”

SELECT * FROM 
fact a INNER JOIN dim b 
ON a.dim_id = b.dim_id AND 
b.date_partition = ‘{current_date}’

SELECT * FROM 
fact a INNER JOIN 
dim b ON a.dim_id = b.dim_id AND
b.date_partition = a.date_partition

Current attributes: Historical attributes:



The future of airflow: “ETL code generation”

- owner: team-data-engineering@acme.com
- time_frames:

- 1 day
- 7 days
- 1 month

- dimensions:
- device_type
- customer_type

- source_data_set: ab_experiment_B250
- demographics:

- age
- gender

mailto:team-data-engineering@acme.com


The future of airflow: “metrics definition”

- metric_name: sold_product_quantity
- subject: user
- sql: SELECT … FROM … WHERE … GROUP BY …
- dependencies:

- sold_product_history
- dimensions:

- product



The future of airflow: “data lineage”



Meta-data engineering: “pipeline machinery”



Thank you!

Join at
slido.com: #bigdata2018
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